1. 算法

定义良好的计算过程,取输入,并产生输出. 即算法是一系列的计算步骤,将输入数据转化为输出结果

算法的特点:

2. 可以解决哪些类型的问题

3. 算法分析

衡量算法的优劣

4. 算法设计

4.1. 分治(divide and conquer)

结构上是递归的, 步骤: 分解,解决, 合并 eg. 快排,归并排序, 矩阵乘法(Strassen

5. 递归式

5.1. 代换法

5.1.1. 步骤

5.1.2. 例子

猜测 证明 归纳奠基 n=2,3 归纳假设 递归

5.1.3. 放缩

对于 如果 直接猜测 不能证明, 而且不要猜测更高的界 可以放缩为 n-b

5.1.4. 改变变量

对于 可以 令 m = logn, 得到 得到

5.2. 递归树

例如 不妨假设 n 为4的幂, 则有如下递归树 recursive-tree.jpg

每个结点是代价, 将每层加起来即可

5.3. 主方法(master method)

对于

5.3.1. 记忆

直观上, 比较 , 谁大就是谁, 相等的话就是 这里的大是多项式上的比较, 即比较次数, 而不是渐近上的 比如 渐近上后者大, 但多项式上是不能比较的

5.3.2. 证明

5.3.2.1. 证明当 n 为 b 的正合幂时成立

5.3.2.2. 分析扩展至所有正整数 n 都成立

主要是应用数学技巧来解决 floor, ceiling 函数的处理问题

6. 随机算法

6.1. 随机排列数组(shuffle)

6.1.1. PERMUTE-BY-SORTING

给出初始数组, eg A={1,2,3}, 选择随机的优先级 P={16,4,10} 则得出 B={2,3,1},因为第二个(2)优先级最小, 为4, 接着第三个,最后第1个. 优先级数组的产生, 一般在 RANDOM(1,n^3), 这样优先级各不相同的概率至少为 1-1/n

由于要排序优先级数组, 所以时间复杂度

如果优先级唯一, 则此算法可以 shuffle 数组 应证明 同样排列的概率是

6.1.2. RANDOMIZE-IN-PLACE

from random import randint
def myshuffle(arr):
    n = len(arr)
    for i in range(n):
        p = randint(i,n-1)
        arr[i],arr[p] = arr[p],arr[i]
    return arr

时间复杂度 证明 定义循环不变式: 对每个可能的 排列, 其在 arr[1..i-1] 中的概率为 初始化: i=1 成立 保持 : 假设 在第 i-1 次迭代之前,成立, 证明在第 i 次迭代之后, 仍然成立, 终止: 在 结束后, i=n+1, 得到 概率为

7. 组合方程的近似算法

8. 概率分析与指示器变量例子

8.1. 球与盒子

把相同的秋随机投到 b 个盒子里,问在每个盒子里至少有一个球之前,平均至少要投多少个球? 称投入一个空盒为击中, 即求取得 b 次击中的概率 设投 n 次, 称第 i 个阶段包括第 i-1 次击中到 第 i 次击中的球, 则第 i 次击中的概率为 表示第 i 阶段的投球数,则 服从几何分布, , 则由期望的线性性, 这个问题又被称为 赠券收集者问题(coupon collector’s problem),即集齐 b 种不同的赠券,在随机情况下平均需要买 blnb 张

8.2. 序列

抛 n 次硬币, 期望看到的连续正面的次数 答案是 记 长度至少为 k 的正面序列开始与第 i 次抛, 由于独立, 所有 k 次抛掷都是正面的 概率为 ,对于 coin1.jpg

coin2.jpg

coin3.jpg

coin4.jpg

9. 摊还分析

9.1. 聚合分析(aggregate analysis)

一个 n 个操作的序列最坏情况下花费的总时间为, 则在最坏情况下, 每个操作的摊还代价为

如栈中的 push, pop 操作都是 , 增加一个新操作 multipop,

def multipop(stk,k):
  while not stk.empty() and k>0:
    stk.pop()
    k-=1

multipop 的时间复杂度为 min(stk.size,k), 最坏情况为 , 则 n 个包含 push pop multipop 的操作列的最坏情况是 , 并不是这样, 注意到, 必须栈中有元素, 再 pop, 所以 push 操作与pop 操作(包含 multipop中的pop), 个数相当, 所以 实际上应为 , 每个操作的摊还代价 为

9.2. 核算法 (accounting method)

对不同操作赋予不同费用 cost (称为摊还代价 ), 可能多于或者少于其实际代价

, 将 ( credit) 存入数据结构中的特定对象.. 对于后续 时, 可以使用这些credit来 支付差额.. 有要求

如栈

op
push 2 1
pop 0 1
multipop 0 min(s,k)

由核算法, 摊还代价满足要求, 所以 n 个操作总代价 , 每个操作摊还代价为

9.3. 势能法(potential method)

势能释放用来支付未来操作的代价, 势能是整个数据结构的, 不是特定对象的(核算法是).

数据结构 为初始状态, 依次 执行 n 个操作 进行势能转换 , 各操作代价为

势函数 , 即为 的势

则第 i 个操作的摊还代价

如果定义一个势函数, 则总摊还代价给出了实际代价的一个上界 可以简单地以

例如栈操作, 设空栈为 , 势函数定义为栈的元素数 对于push,

对于 multipop,

同理 pop 的摊还代价也是0, 则总摊还代价的上界(最坏情况) 为